By Topic

ESD protection design for mixed-voltage I/O buffer with substrate-triggered circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Dou Ker ; Nanoelectronics & Gigascale Syst. Lab., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Hsin-Chyh Hsu

A substrate-triggered technique is proposed to improve the electrostatic discharge (ESD) robustness of a stacked-nMOS device in the mixed-voltage I/O circuit. The substrate-triggered technique can further lower the trigger voltage of a stacked-nMOS device to ensure effective ESD protection for mixed-voltage I/O circuits. The proposed ESD protection circuit with substrate-triggered design for a 2.5-V/3.3-V-tolerant mixed-voltage I/O circuit has been fabricated and verified in a 0.25-μm salicided CMOS process. The substrate-triggered circuit for a mixed-voltage I/O buffer to meet the desired circuit application in different CMOS processes can be easily adjusted by using HSPICE simulation. Experimental results have confirmed that the human- body-model (HBM) ESD robustness of a mixed-voltage I/O circuit can be increased ∼60% by this substrate-triggered design.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 1 )