By Topic

Regular and irregular progressive edge-growth tanner graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao-Yu Hu ; Zurich Res. Lab., IBM Res., Switzerland ; Eleftheriou, E. ; Arnold, D.M.

We propose a general method for constructing Tanner graphs having a large girth by establishing edges or connections between symbol and check nodes in an edge-by-edge manner, called progressive edge-growth (PEG) algorithm. Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting low-density parity-check (LDPC) codes are derived in terms of parameters of the graphs. Simple variations of the PEG algorithm can also be applied to generate linear-time encodeable LDPC codes. Regular and irregular LDPC codes using PEG Tanner graphs and allowing symbol nodes to take values over GF(q) (q>2) are investigated. Simulation results show that the PEG algorithm is a powerful algorithm to generate good short-block-length LDPC codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 1 )