By Topic

Consistency of support vector machines and other regularized kernel classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Steinwart, I. ; Los Alamos Nat. Lab., NM

It is shown that various classifiers that are based on minimization of a regularized risk are universally consistent, i.e., they can asymptotically learn in every classification task. The role of the loss functions used in these algorithms is considered in detail. As an application of our general framework, several types of support vector machines (SVMs) as well as regularization networks are treated. Our methods combine techniques from stochastics, approximation theory, and functional analysis

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 1 )