Cart (Loading....) | Create Account
Close category search window
 

Integrated optical components utilizing long-range surface plasmon polaritons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Boltasseva, A. ; Res. Center COM, Tech. Univ. of Denmark, Lyngby, Denmark ; Nikolajsen, Thomas ; Leosson, Kristjan ; Kjaer, K.
more authors

New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded in polymer via excitation of LR-SPPs is investigated in the wavelength range of 1250-1650 nm. LR-SPP guiding properties, such as the propagation loss and mode-field diameter, are investigated for different stripe widths and thicknesses. A propagation loss of /spl sim/6 dB/cm, a coupling loss of /spl sim/0.5 dB (per facet), and a bend loss of /spl sim/5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-/spl mu/m-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0.8 mm are found for directional couplers with, respectively, 4- and 0-/spl mu/m-separated waveguides formed by 15-nm-thick and 8-/spl mu/m-wide gold stripes. LR-SPP-based waveguides and waveguide components are modeled using the effective-refractive-index method, and good agreement with experimental results is obtained.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.