By Topic

Improved supercontinuum generation through UV processing of highly nonlinear fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. S. Westbrook ; OFS Labs., Somerset, NJ, USA ; J. W. Nicholson ; K. S. Feder ; A. D. Yablon

We demonstrate that UV exposure of highly nonlinear, germano-silicate fibers can significantly broaden the infrared supercontinuum generated by femtosecond pulses in these fibers. Both simulations and measurements of the fiber chromatic dispersion show that UV-induced refractive index changes increase the waveguide dispersion by up to 5 ps/(nm-km) at 1570 nm and shift the dispersion zero by over 100 nm. We examine fibers with a range of UV exposure levels and show that the short wavelength edge of the supercontinuum can be continuously changed by more than 100 nm. We also show that the long wavelength edge is extended beyond that of the unexposed fiber. The resulting continuum spans from 0.85 to 2.6 /spl mu/m. Cutback measurements show that the supercontinuum in the exposed fiber is generated in as little as 1 cm of fiber. A nonlinear Schro/spl uml/dinger equation (NLSE) model of the supercontinuum generation in the nonlinear fiber shows that the short wavelength behavior of the continuum is primarily controlled by changes in the fiber dispersion caused by the UV-induced change in refractive index of the fiber core.

Published in:

Journal of Lightwave Technology  (Volume:23 ,  Issue: 1 )