By Topic

Mining closed and maximal frequent subtrees from databases of labeled rooted trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yun Chi ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Yi Xia ; Yirong Yang ; R. R. Muntz

Tree structures are used extensively in domains such as computational biology, pattern recognition, XML databases, computer networks, and so on. One important problem in mining databases of trees is to find frequently occurring subtrees. Because of the combinatorial explosion, the number of frequent subtrees usually grows exponentially with the size of frequent subtrees and, therefore, mining all frequent subtrees becomes infeasible for large tree sizes. We present CMTreeMiner, a computationally efficient algorithm that discovers only closed and maximal frequent subtrees in a database of labeled rooted trees, where the rooted trees can be either ordered or unordered. The algorithm mines both closed and maximal frequent subtrees by traversing an enumeration tree that systematically enumerates all frequent subtrees. Several techniques are proposed to prune the branches of the enumeration tree that do not correspond to closed or maximal frequent subtrees. Heuristic techniques are used to arrange the order of computation so that relatively expensive computation is avoided as much as possible. We study the performance of our algorithm through extensive experiments, using both synthetic data and data sets from real applications. The experimental results show that our algorithm is very efficient in reducing the search space and quickly discovers all closed and maximal frequent subtrees.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:17 ,  Issue: 2 )