Cart (Loading....) | Create Account
Close category search window
 

A stochastic downhill search algorithm for estimating the local false discovery rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scheid, S. ; Max Planck Inst. for Molecular Genetics, Berlin, Germany ; Spang, R.

Screening for differential gene expression in microarray studies leads to difficult large-scale multiple testing problems. The local false discovery rate is a statistical concept for quantifying uncertainty in multiple testing. We introduce a novel estimator for the local false discovery rate that is based on an algorithm which splits all genes into two groups, representing induced and noninduced genes, respectively. Starting from the full set of genes, we successively exclude genes until the gene-wise p-values of the remaining genes look like a typical sample from a uniform distribution. In comparison to other methods, our algorithm performs compatibly in detecting the shape of the local false discovery rate and has a smaller bias with respect to estimating the overall percentage of noninduced genes. Our algorithm is implemented in the Bioconductor compatible R package TWILIGHT version 1.0.1, which is available from http://compdiag.molgen.mpg.de/software or from the Bioconductor project at http://www.bioconductor.org.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:1 ,  Issue: 3 )

Date of Publication:

July-Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.