By Topic

A proposal of visualization method for obtaining interpretable fuzzy rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yamamoto, K. ; Mie Univ., Tsu, Japan ; Furuhashi, T. ; Yoshikawa, T.

Interpretability of fuzzy models has become one of the major topics in the field of fuzzy modeling. Visualization that makes input-output relationships interpretable is effective in extracting useful knowledge from unknown data. This paper presents visualization method that considers the visibility of fuzzy models. This method identifies clusters that have different statistical features, and projects the data to the "fusion axes", which are linear combinations of the multiple input variables, considering the distribution of each cluster in the projected space. This paper applies the proposed method to artificial data and also to collected data from the mobile robot, and shows that the proposed method can extract useful knowledge from the obtained visible and interpretable models.

Published in:

Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on  (Volume:2 )

Date of Conference:

25-29 July 2004