By Topic

Two step feature selection: approximate functional dependency approach using membership values

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Uncu, O. ; Dept. of Industrial Eng., Middle East Tech. Univ., Ankara, Turkey ; Turksen, I.B.

Feature selection is one of the most important issues in fields such as system modelling and pattern recognition. In this study, a new feature selection algorithm that combines feature wrapper and feature filter approaches is proposed in order to identify the significant input variables in systems with continuous domains. The proposed method utilizes functional dependency concept and k-nearest neighbourhood method to implement the feature filter and feature wrapper, respectively. It is common to have outliers and noise in real-life data. In order to make the proposed feature selection algorithm noise and outlier resistant, approximate functional dependencies are used by utilizing membership values that inherently cope with uncertainty in the data.

Published in:

Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on  (Volume:3 )

Date of Conference:

25-29 July 2004