By Topic

Noise characterization of block-iterative reconstruction algorithms: II. Monte Carlo simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soares, E.J. ; Univ. of Massachusetts Med. Sch., Worcester, MA, USA ; Glick, S.J. ; Hoppin, J.W.

In Soares et al. (2000), the ensemble statistical properties of the rescaled block-iterative expectation-maximization (RBI-EM) reconstruction algorithm and rescaled block-iterative simultaneous multiplicative algebraic reconstruction technique (RBI-SMART) were derived. Included in this analysis were the special cases of RBI-EM, maximum-likelihood EM (ML-EM) and ordered-subset EM (OS-EM), and the special case of RBI-SMART, SMART. Explicit expressions were found for the ensemble mean, covariance matrix, and probability density function of RBI reconstructed images, as a function of iteration number. The theoretical formulations relied on one approximation, namely that the noise in the reconstructed image was small compared to the mean image. We evaluate the predictions of the theory by using Monte Carlo methods to calculate the sample statistical properties of each algorithm and then compare the results with the theoretical formulations. In addition, the validity of the approximation will be justified.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 1 )