By Topic

Cone-beam reconstruction using the backprojection of locally filtered projections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. D. Pack ; Dept. of Radiol., Univ. of Utah, Salt Lake City, UT, USA ; F. Noo ; R. Clackdoyle

This paper describes a flexible new methodology for accurate cone beam reconstruction with source positions on a curve (or set of curves). The inversion formulas employed by this methodology are based on first backprojecting a simple derivative in the projection space and then applying a Hilbert transform inversion in the image space. The local nature of the projection space filtering distinguishes this approach from conventional filtered-backprojection methods. This characteristic together with a degree of flexibility in choosing the direction of the Hilbert transform used for inversion offers two important features for the design of data acquisition geometries and reconstruction algorithms. First, the size of the detector necessary to acquire sufficient data for accurate reconstruction of a given region is often smaller than that required by previously documented approaches. In other words, more data truncation is allowed. Second, redundant data can be incorporated for the purpose of noise reduction. The validity of the inversion formulas along with the application of these two properties are illustrated with reconstructions from computer simulated data. In particular, in the helical cone beam geometry, it is shown that 1) intermittent transaxial truncation has no effect on the reconstruction in a central region which means that wider patients can be accommodated on existing scanners, and more importantly that radiation exposure can be reduced for region of interest imaging and 2) at maximum pitch the data outside the Tam-Danielsson window can be used to reduce image noise and thereby improve dose utilization. Furthermore, the degree of axial truncation tolerated by our approach for saddle trajectories is shown to be larger than that of previous methods.

Published in:

IEEE Transactions on Medical Imaging  (Volume:24 ,  Issue: 1 )