By Topic

Segmentation of kidney from ultrasound images based on texture and shape priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Xie ; Biomed. Eng. Dept., Chinese Univ. of Hong Kong, China ; Yifeng Jiang ; Hung-tat Tsui

This work presents a novel texture and shape priors based method for kidney segmentation in ultrasound (US) images. Texture features are extracted by applying a bank of Gabor filters on test images through a two-sided convolution strategy. The texture model is constructed via estimating the parameters of a set of mixtures of half-planed Gaussians using the expectation-maximization method. Through this texture model, the texture similarities of areas around the segmenting curve are measured in the inside and outside regions, respectively. We also present an iterative segmentation framework to combine the texture measures into the parametric shape model proposed by Leventon and Faugeras. Segmentation is implemented by calculating the parameters of the shape model to minimize a novel energy function. The goal of this energy function is to partition the test image into two regions, the inside one with high texture similarity and low texture variance, and the outside one with high texture variance. The effectiveness of this method is demonstrated through experimental results on both natural images and US data compared with other image segmentation methods and manual segmentation.

Published in:

IEEE Transactions on Medical Imaging  (Volume:24 ,  Issue: 1 )