By Topic

Deriving an equivalent circuit of transformers insulation for understanding the dielectric response measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saha, T.K. ; Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, Qld., Australia ; Purkait, P. ; Muller, F.

Preventive diagnosis and maintenance of transformers have become more and more popular in recent times in order to improve the reliability of electric power systems. Dielectric testing techniques such as return voltage measurement (RVM) and polarization-depolarization current (PDC) measurement are being investigated as potential tools for condition assessment of transformer insulation. A better understanding and analysis of the dielectric test results are only possible with a clear understanding of the physical behavior of the insulation system in response to moisture and aging. A circuit model, which describes the dielectric behavior of the transformer's main insulation system, has been parameterized in this paper. The values of the parameters of the model have been identified from the dielectric tests. A correlation has been developed between the physical condition of the insulation and the equivalent model parameters that enable a clear and transparent interpretation of the dielectric test results.

Published in:

Power Delivery, IEEE Transactions on  (Volume:20 ,  Issue: 1 )