By Topic

Multiple-input multiple-output fixed wireless radio channel measurements and modeling using dual-polarized antennas at 2.5 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Erceg, V. ; Iospan Wireless Inc., San Jose, CA, USA ; Soma, P. ; Baum, D.S. ; Catreux, S.

This paper presents outdoor propagation measurements together with derivative analysis, modeling, and simulation of the 2×2 fixed wireless multiple-input multiple-output (MIMO) channel. Experimental data were collected in the suburban residential areas of San Jose, CA, at 2.48 GHz by using dual-polarized antennas. Measurement results include the estimation of path loss, Rician K-factor, cross-polarization discrimination (CPD), correlation coefficients, and the MIMO channel capacity. An elaborate K-factor model that assumes variation over location, time, and frequency is developed. Distance-dependent CPD models of the variable and constant signal components are proposed. A generalized 2×2 MIMO channel model is then derived based on the correlation among the path loss, the copolarized K-factor, and the CPD's distribution of the constant and scattered signal components. Finally, the MIMO channel response is simulated using the newly developed model, and results are found to be well in agreement with measurements.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 6 )