By Topic

Globally optimal transmitter placement for indoor wireless communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Jian He ; Dept. of Comput. Sci., Virginia Polytech. Inst., Blacksburg, VA, USA ; Verstak, A.A. ; Watson, L.T. ; Stinson, C.A.
more authors

A global optimization technique is applied to solve the optimal transmitter placement problem for indoor wireless systems. An efficient pattern search algorithm - DIviding RECTangles (DIRECT) of Jones et al.- has been connected to a parallel three-dimensional radio propagation ray tracing modeler running on a 200-node Beowulf cluster of Linux workstations. Surrogate functions for a parallel wideband code-division multiple-access (WCDMA) simulator were used to estimate the system performance for the global optimization algorithm. Power coverage and bit-error rate are considered as two different criteria for optimizing locations of a specified number of transmitters across the feasible region of the design space. This paper briefly describes the underlying radio propagation and WCDMA simulations and focuses on the design issues of the optimization loop.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 6 )