By Topic

A Fourier theory for cast shadows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramamoorthi, R. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Koudelka, M. ; Belhumeur, P.

Cast shadows can be significant in many computer vision applications, such as lighting-insensitive recognition and surface reconstruction. Nevertheless, most algorithms neglect them, primarily because they involve nonlocal interactions in nonconvex regions, making formal analysis difficult. However, many real instances map closely to canonical configurations like a wall, a V-groove type structure, or a pitted surface. In particular, we experiment with 3D textures like moss, gravel, and a kitchen sponge, whose surfaces include canonical configurations like V-grooves. This paper takes a first step toward a formal analysis of cast shadows, showing theoretically that many configurations can be mathematically analyzed using convolutions and Fourier basis functions. Our analysis exposes the mathematical convolution structure of cast shadows and shows strong connections to recent signal-processing frameworks for reflection and illumination.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 2 )