By Topic

Representation and detection of deformable shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. F. Felzenszwalb ; Dept. of Comput. Sci., Chicago Univ., IL, USA

We describe some techniques that can be used to represent and detect deformable shapes in images. The main difficulty with deformable template models is the very large or infinite number of possible nonrigid transformations of the templates. This makes the problem of finding an optimal match of a deformable template to an image incredibly hard. Using a new representation for deformable shapes, we show how to efficiently find a global optimal solution to the nonrigid matching problem. The representation is based on the description of objects using triangulated polygons. Our matching algorithm can minimize a large class of energy functions, making it applicable to a wide range of problems. We present experimental results of detecting shapes in medical images and images of natural scenes. We also consider the problem of learning a nonrigid shape model for a class of objects from examples. We show how to learn good models while constraining them to be in the form required by the matching algorithm.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 2 )