By Topic

Separating reflection components of textured surfaces using a single image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. T. Tan ; Inst. of Ind. Sci., Tokyo Univ., Japan ; K. Ikeuchi

In inhomogeneous objects, highlights are linear combinations of diffuse and specular reflection components. To our knowledge, all methods that use a single input image require explicit color segmentation to deal with multicolored surfaces. Unfortunately, for complex textured images, current color segmentation algorithms are still problematic to segment correctly. Consequently, a method without explicit color segmentation becomes indispensable and This work presents such a method. The method is based solely on colors, particularly chromaticity, without requiring any geometrical information. One of the basic ideas is to iteratively compare the intensity logarithmic differentiation of an input image and its specular-free image. A specular-free image is an image that has exactly the same geometrical profile as the diffuse component of the input image and that can be generated by shifting each pixel's intensity and maximum chromaticity nonlinearly. Unlike existing methods using a single image, all processes in the proposed method are done locally, involving a maximum of only two neighboring pixels. This local operation is useful for handling textured objects with complex multicolored scenes. Evaluations by comparison with the results of polarizing filters demonstrate the effectiveness of the proposed method.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 2 )