By Topic

On-chip interconnects and instruction steering schemes for clustered microarchitectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Parcerisa, J. ; Dept. of Comput. Sci., Univ. Politecnica de Catalunya, Barcelona, Spain ; Sahuquillo, J. ; Gonzalez, A. ; Duato, J.

Clustering is an effective microarchitectural technique for reducing the impact of wire delays, the complexity, and the power requirements of microprocessors. In this work, we investigate the design of on-chip interconnection networks for clustered superscalar microarchitectures. This new class of interconnects has demands and characteristics different from traditional multiprocessor networks. In particular, in a clustered microarchitecture, a low intercluster communication latency is essential for high performance. We propose some point-to-point cluster interconnects and new improved instruction steering schemes. The results show that these point-to-point interconnects achieve much better performance than bus-based ones, and that the connectivity of the network together with effective steering schemes are key for high performance. We also show that these interconnects can be built with simple hardware and achieve a performance close to that of an idealized contention-free model.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 2 )