Cart (Loading....) | Create Account
Close category search window
 

Joint application mapping/interconnect synthesis techniques for embedded chip-scale multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bambha, N.K. ; US Army Res. Lab., Adelphi, MD, USA ; Bhattacharyya, S.S.

As transistor sizes shrink, interconnects represent an increasing bottleneck for chip designers. Several groups are developing new interconnection methods and system architectures to cope with this trend. New architectures require new methods for high-level application mapping and hardware/software codesign. We present high-level scheduling and interconnect topology synthesis techniques for embedded multiprocessor systems-on-chip that are streamlined for one or more digital signal processing applications. That is, we seek to synthesize an application-specific interconnect topology. We show that flexible interconnect topologies utilizing low-hop communication between processors offer advantages for reduced power and latency. We show that existing multiprocessor scheduling algorithms can deadlock if the topology graph is not strongly connected, or if a constraint is imposed on the maximum number of hops allowed for communication. We detail an efficient algorithm that can be used in conjunction with existing scheduling algorithms for avoiding this deadlock. We show that it is advantageous to perform application scheduling and interconnect synthesis jointly, and present a probabilistic scheduling/interconnect algorithm that utilizes graph isomorphism to pare the design space.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.