Cart (Loading....) | Create Account
Close category search window
 

Hybrid hardware-accelerated image composition for sort-last parallel rendering on graphics clusters with commodity image compositor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

Hardware-accelerated image composition for sort-last parallel rendering has received increasing attention as an effective solution to increased performance demands brought about by the recent advances in commodity graphics accelerators. So far, several different hardware solutions for alpha and depth compositing have been proposed and a few of them have become commercially available. They share impressive compositing speed and high scalability. However, the cost makes it prohibitively expensive to build a large visualization system. In this paper, we used a hardware image compositor marketed by Mitsubishi Precision Co., Ltd. (MPC) which is now available as an independent device enabling the building of our own visualization cluster. This device is based on binary compositing tree architecture, and the scalable cascade interconnection makes it possible to build a large visualization system. However, we focused on a minimal configuration PC cluster using only one compositing device while taking cost into consideration. In order to emulate this cascade interconnection of MPC compositors, we propose and evaluate the hybrid hardware-assisted image composition method which uses the OpenGL alpha blending capability of the graphics boards for assisting the hardware image composition process. Preliminary experiments show that the use of graphics boards diminished the performance degradation when using an emulation based on image feedback through available interconnection network. We found that this proposed method becomes an important alternative for providing high performance image composition at a reasonable cost.

Published in:

Volume Visualization and Graphics, 2004 IEEE Symposium on

Date of Conference:

11-12 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.