By Topic

Learning multi-time delay gene network using Bayesian network framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tie-Fei Liu ; Dept. of Comput. Sci., Nat. Univ. of Singapore, Singapore ; Wing-Kin Sung ; Mittal, A.

Exact determination of gene network is required to discover the higher-order structures of an organism and to interpret its behavior. Most research work in learning gene networks either assumes that there is no time delay in gene expression or that there is a constant time delay. The paper shows how Bayesian networks can be applied to represent multitime delay relationships as well as directed loops. The intractability of the network learning algorithm is handled by using an improved mutual information criteria. Also, a new structure learning algorithm, "learning by modification", is proposed to learn the sparse structure of a gene network. The experimental results on synthetic data and real data show that our method is more accurate in determining the gene structure as compared to the traditional methods. Even for transcriptional loops spanning over the whole cell, our algorithm can detect them.

Published in:

Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on

Date of Conference:

15-17 Nov. 2004