Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Iterative reference adjustment for high-precision and repetitive motion control applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Kok Kiong Tan ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Shao Zhao ; Sunan Huang

A learning control scheme is proposed which is suitable for high-precision and repetitive motion control applications. It comprises of a self-tuning radial basis function (RBF) network operating in parallel with an iterative learning control (ILC) component. Unlike the usual ILC scheme which adapts a feedforward control signal to achieve improved tracking performance over time, the proposed scheme iteratively adjusts the reference signal. The RBF network is employed as a nonlinear function estimator to model the tracking error over a cycle, and this error model is subsequently used implicitly in the iterative adaptation of the reference signal over the next cycle. The ILC component further enhances the tracking performance, particularly over the sections of the trajectory where the RBF network is less adequate in its modeling function. Simulation examples and real-time experimental results are fully furnished to elaborate the various highlights of the proposed method.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:13 ,  Issue: 1 )