Cart (Loading....) | Create Account
Close category search window

An autonomous excavator with vision-based track-slippage control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Saeedi, P. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Lawrence, P.D. ; Lowe, D.G. ; Jacobsen, P.
more authors

This paper describes a vision-based control system for a tracked mobile robot (an excavator). The system includes several controllers that collaborate to move the mobile vehicle from a starting position to a goal position. First, the path planner designs an optimum path using a predefined elevation map of the work space. Second, a fuzzy logic path-tracking controller estimates the rotational and translational velocities for the vehicle to move along the predesigned path. Third, a cross coupling controller corrects the possible orientation error that may occur when moving along the path. A motor controller then converts the track velocities to the corresponding rotational wheel velocities. Fourth, a vision-based motion tracking system is implemented to find the three-dimensional (3-D) motion of the vehicle as it moves in the work space. Finally, a specially-designed slippage controller detects slippage by comparing the motion through reading of flowmeters and the vision system. If slippage has occurred, the remaining path is corrected within the path tracking controller to stop at the goal position. Experiments are conducted to test and verify the presented control system. An analysis of the results shows that improvement is achieved in both path-tracking accuracy and slippage control problems.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:13 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.