By Topic

Modeling and control of steering system of heavy vehicles for automated highway systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meihua Tai ; Dept. of Mech. Eng., Polytech. Univ., Brooklyn, NY, USA ; Hingwe, P. ; Tomizuka, M.

This work presents modeling, analysis, and controller design of the steering subsystem of heavy vehicles as a subsystem of vehicle lateral control system for the automated highway systems. A physical model of the steering subsystem is derived where the hydraulic power assist unit is modeled as a family of static nonlinear boost curves. Based on open-loop frequency tests and analysis of the physical model structure and its dynamical characteristics, a nominal second order linear model of the steering subsystem is obtained. Then, a linear robust loop-shaping controller is designed to provide a good tracking performance of the closed-loop dynamics of the steering subsystem for varying gain cross over frequencies which is a result of the nonlinear characteristics of the hydraulic power assist. The controller has been successfully incorporated as an inner-loop controller into the nested lateral control architecture for autonomous driving and its efficacy has been demonstrated experimentally.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:9 ,  Issue: 4 )