By Topic

Secondary control for a series reactive compensator based on a voltage-source PWM inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jung-Wook Park ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin-Madison, Madison, WI, USA ; R. G. Harley

This work describes a secondary control scheme of a series reactive compensator for a power system based on a single voltage-source pulse-width-modulated (PWM) inverter. The controllable capacitive reactance can be used as a supplementary control variable for the secondary (external) controller (SC) of a series capacitive reactance compensator to improve the dynamic transient and damping performances of the power system. From the viewpoint of agent-based global dynamic optimization of a system, the selection and use of suitable input signals for the SC are investigated. Detailed simulation results show that the SC with local feedback loop (LFL) has a powerful control performance; however, it requires the controllable compensation for a reference change due to different operating conditions. On the other hand, the SC with global feedback loop (GFL) avoids the need of reference compensation; moreover, its dynamic control performance is improved when the dual inputs (frequency and active power signal) are used, compared to when only the frequency is used as an input signal.

Published in:

IEEE Power Electronics Letters  (Volume:2 ,  Issue: 4 )