Cart (Loading....) | Create Account
Close category search window
 

Visualization of intricate flow structures for vortex breakdown analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tricoche, X. ; Utah Univ., Salt Lake City, UT, USA ; Garth, C. ; Kindlmann, G. ; Deines, E.
more authors

Vortex breakdowns and flow recirculation are essential phenomena in aeronautics where they appear as a limiting factor in the design of modern aircrafts. Because of the inherent intricacy of these features, standard flow visualization techniques typically yield cluttered depictions. The paper addresses the challenges raised by the visual exploration and validation of two CFD simulations involving vortex breakdown. To permit accurate and insightful visualization we propose a new approach that unfolds the geometry of the breakdown region by letting a plane travel through the structure along a curve. We track the continuous evolution of the associated projected vector field using the theoretical framework of parametric topology. To improve the understanding of the spatial relationship between the resulting curves and lines we use direct volume rendering and multidimensional transfer functions for the display of flow-derived scalar quantities. This enriches the visualization and provides an intuitive context for the extracted topological information. Our results offer clear, synthetic depictions that permit new insight into the structural properties of vortex breakdowns.

Published in:

Visualization, 2004. IEEE

Date of Conference:

10-15 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.