By Topic

Assessing the impact and limits of steady-state scheduling for mixed task and data parallelism on heterogeneous platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beaumont, O. ; LaBRI, UMR CNRS, Bordeaux, France ; Legrand, A. ; Marchal, L. ; Robert, Y.

In this paper, we consider steady-state scheduling techniques for mapping a collection of task graphs onto heterogeneous systems, such as clusters and grids. We advocate the use of steady-state scheduling to solve this difficult problem. Due to space limitations, we concentrate on complexity results. We show that the problem of optimizing the steady-state throughput is NP-complete in the general case. We formulate a compact version of the problem that belongs to the NP complexity class but which does not restrict the optimality of the solution. We provide many positive results in the extended version (Beaumont et al., 2004). Indeed, we show how to determine in polynomial time the best steady-state scheduling strategy for a large class of application graphs and for an arbitrary platform graphs, using a linear programming approach.

Published in:

Parallel and Distributed Computing, 2004. Third International Symposium on/Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks, 2004. Third International Workshop on

Date of Conference:

5-7 July 2004