By Topic

Optimal computing budget allocation for multi-objective simulation models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Loo Hay Lee ; Dept. of Ind. & Syst. Eng., Nat. Univ. of Singapore, Singapore ; Ek Peng Chew ; Suyan Teng ; Goldsman, David

Simulation plays a vital role in identifying the best system design from among a set of competing designs. To improve simulation efficiency, ranking and selection techniques are often used to determine the number of simulation replications required so that a prespecified level of correct selection is guaranteed at a modest possible computational expense. As most real-life systems are multiobjective in nature, in this paper, we consider a multiobjective ranking and selection problem, where the system designs are evaluated in terms of more than one performance measure. We incorporate the concept of Pareto optimality into the ranking and selection scheme, and try to find all of the nondominated designs rather than a single "best" one. A simple sequential solution method is proposed to allocate the simulation replications. Computational results show that the proposed algorithm is efficient in terms of the total number of replications needed to find the Pareto set.

Published in:

Simulation Conference, 2004. Proceedings of the 2004 Winter  (Volume:1 )

Date of Conference:

5-8 Dec. 2004