Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Evaluation of secure peer-to-peer overlay routing for survivable SCADA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farris, J.J. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Nicol, D.M.

Supervisory control and data acquisition (SCADA) systems gather and analyze data for real-time control. SCADA systems are used extensively, in applications such as electrical power distribution, telecommunications, and energy refining. SCADA systems are obvious targets for cyber-attacks that would seek to disrupt the physical complexities governed by a SCADA system. This paper uses a discrete-event simulation to begin to investigate the characteristics of one potential means of hardening SCADA systems against a cyber-attack. When it appears that real-time message delivery constraints are hot being met (due, for example, to a denial of service attack), a peer-to-peer overlay network is used to route message floods in an effort to ensure delivery. The SCADA system, and peer-to-peer nodes all use strong hardware-based authentication techniques to prevent injection of false data or commands, and to harden the routing overlay. Our simulations help to quantify the anticipated tradeoffs of message survivability and latency minimization.

Published in:

Simulation Conference, 2004. Proceedings of the 2004 Winter  (Volume:1 )

Date of Conference:

5-8 Dec. 2004