By Topic

Reduced-rank adaptive detection of distributed sources using subarrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuanwei Jin ; Univ. of California, Santa Cruz, CA, USA ; B. Friedlander

We introduce a framework for exploring array detection problems in a reduced-dimensional space. This involves calculating a structured subarray transformation matrix for the detection of a distributed signal using large aperture linear arrays. We study the performance of the adaptive subarray detector and evaluate its potential improvement in detection performance compared with the full array detector with finite data samples. One would expect that processing on subarrays may result in performance loss in that smaller number of degrees of freedom is utilized. However, it also leads to a better estimation accuracy for the interference and noise covariance matrix with finite data samples, which will yield some gain in performance. By studying the subarray detector for general linear arrays, we identify this gain under various scenarios. We show that when the number of samples is small, the subarray detectors have a significant gain over the full array detector. In addition, the subarray processing can also be successfully applied to the problem of detecting moving sources in an underwater acoustic scenario. We validate our results by computer simulations.

Published in:

IEEE Transactions on Signal Processing  (Volume:53 ,  Issue: 1 )