By Topic

On finite-state vector quantization for noisy channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yahampath, P. ; Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, Man., Canada ; Pawlak, M.

Finite-state vector quantization (FSVQ) over a noisy channel is studied. A major drawback of a finite-state decoder is its inability to track the encoder in the presence of channel noise. In order to overcome this problem, we propose a nontracking decoder which directly estimates the code vectors used by a finite-state encoder. The design of channel-matched finite-state vector quantizers for noisy channels, using an iterative scheme resembling the generalized Lloyd algorithm, is also investigated. Simulation results based on encoding a Gauss-Markov source over a memoryless Gaussian channel show that the proposed decoder exhibits graceful degradation of performance with increasing channel noise, as compared with a finite-state decoder. Also, the channel-matched finite-state vector quantizers are shown to outperform channel-optimized vector quantizers having the same vector dimension and rate. However, the nontracking decoder used in the channel-matched finite-state quantizer has a higher computational complexity, compared with a channel-optimized vector-quantizer decoder. Thus, if they are allowed to have the same overall complexity (encoding and decoding), the channel-optimized vector quantizer can use a longer encoding delay and achieve similar or better performance. Finally, an example of using the channel-matched finite-state quantizer as a backward-adaptive quantizer for nonstationary signals is also presented.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 12 )