By Topic

Numerical simulations of light scattering by red blood cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Karlsson ; Dept. of Electrosci., Lund Univ., Sweden ; Jiangping He ; J. Swartling ; S. Andersson-Engels

Scattering of electromagnetic waves from a red blood cell is simulated using the finite-difference time-domain method (FDTD), the Rytov approximation and the discrete dipole approximation (DDA). Both FDTD and DDA are full wave methods that give accurate results in a wide range of wavelengths. The Rytov approximation is a much simpler method that is limited to scattering angles within 30° from the forward direction. The investigation comprehends different wavelengths and different orientations of the cell. It shows that the shape, volume, and orientation of the cell have a large influence on the forward scattering.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:52 ,  Issue: 1 )