Cart (Loading....) | Create Account
Close category search window
 

A muon identification and combined reconstruction procedure for the ATLAS detector at the LHC at CERN

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

23 Author(s)
Lagouri, Th. ; Nucl. Phys. Lab., Aristotle Univ. of Thessaloniki, Greece ; Adams, D. ; Assamagan, K. ; Biglietti, M.
more authors

Muon identification (MUID) and high-momentum measurement accuracy is crucial to fully exploit the physics potential that will be accessible with the ATLAS experiment at the LHC. The muon energy of physics interest ranges in a large interval from few GeV, where the b-physics studies dominate the physics program, up to the highest values that could indicate the presence of new physics. The muon detection system of the ATLAS detector is characterized by two high-precision tracking systems, namely the inner detector (ID) and the muon spectrometer, (MS) plus a thick calorimeter that ensures a safe hadron absorption filtering with high-purity muons with energy above 3 GeV. In order to combine the muon tracks reconstructed in the ID and the MS, a MUID object-oriented software package has been developed. The purpose of the MUID procedure is to associate tracks found in the MS with the corresponding ID track and calorimeter information in order to identify muons at their production vertex with optimum parameter resolution. The performance of these two combined systems has been evaluated with Monte Carlo studies using single muons of fixed-transverse momentum and with full physics events.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:51 ,  Issue: 6 )

Date of Publication:

Dec. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.