By Topic

New cascade approach for global κ-exponential tracking of underactuated ships

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ti-Chung Lee ; Dept. of Electr. Eng., Ming Hsin Univ. of Sci. & Technol., Hsinchu, Taiwan ; Zhong-Ping Jiang

This note investigates the fast tracking control problem of underactuated ships via persistent excitation (PE) conditions. By combining a novel transformation with the computed torque method, a decoupling controller related to the surge force is given first to decompose the error model into two cascade subsystems. Then, a stabilizing controller involving the yaw moment is designed. With the help of the proposed cascaded structure, a weaker PE condition than those given in past literature can be used to verify an integral detectability and guarantee global κ-exponential convergence by employing several newly developed stability criteria. A new feature of the obtained results is that only one of these reference signals is needed to satisfy the usual PE condition. Simulation results are provided to validate the effectiveness of the proposed scheme.

Published in:

IEEE Transactions on Automatic Control  (Volume:49 ,  Issue: 12 )