By Topic

Perturbation analysis and optimization of stochastic flow networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gang Sun ; Dept. of Manuf. Eng., Boston Univ., MA, USA ; Cassandras, C.G. ; Wardi, Y. ; Panayiotou, C.G.
more authors

We consider a stochastic fluid model of a network consisting of several single-class nodes in tandem and perform perturbation analysis for the node queue contents and associated event times with respect to a threshold parameter at the first node. We then derive infinitesimal perturbation analysis (IPA) derivative estimators for loss and buffer occupancy performance metrics with respect to this parameter and show that these estimators are unbiased. We also show that the estimators depend only on data directly observable from a sample path of the actual underlying discrete event system, without any knowledge of the stochastic characteristics of the random processes involved. This renders them computable in online environments and easily implementable for network management and optimization. This is illustrated by combining the IPA estimators with standard gradient based stochastic optimization methods and providing simulation examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 12 )