Cart (Loading....) | Create Account
Close category search window
 

Statistical processing of large image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khellah, F. ; Dept. of Comput. Sci., Prince Sultan Univ., Riyadh, Saudi Arabia ; Fieguth, P. ; Murray, M.J. ; Allen, M.

The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. We present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 × 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.