By Topic

Pseudopolar-based estimation of large translations, rotations, and scalings in images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Keller, Y. ; Dept. of Math., Yale Univ., New Haven, CT, USA ; Averbuch, A. ; Israeli, Moshe

One of the major challenges related to image registration is the estimation of large motions without prior knowledge. This work presents a Fourier-based approach that estimates large translations, scalings, and rotations. The algorithm uses the pseudopolar (PP) Fourier transform to achieve substantial improved approximations of the polar and log-polar Fourier transforms of an image. Thus, rotations and scalings are reduced to translations which are estimated using phase correlation. By utilizing the PP grid, we increase the performance (accuracy, speed, and robustness) of the registration algorithms. Scales up to 4 and arbitrary rotation angles can be robustly recovered, compared to a maximum scaling of 2 recovered by state-of-the-art algorithms. The algorithm only utilizes one-dimensional fast Fourier transform computations whose overall complexity is significantly lower than prior works. Experimental results demonstrate the applicability of the proposed algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 1 )