By Topic

Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Douglas, S.C. ; Dept. of Electr. Eng., Southern Methodist Univ., Dallas, TX, USA ; Sawada, H. ; Makino, S.

Natural gradient adaptation is an especially convenient method for adapting the coefficients of a linear system in inverse filtering tasks such as convolutive blind source separation and multichannel blind deconvolution. When developing practical implementations of such methods, however, it is not clear how best to window the signals and truncate the filter impulse responses within the filtered gradient updates. We show how inadequate use of truncation of the filter impulse responses and signal windowing within a well-known natural gradient algorithm for multichannel blind deconvolution and source separation can introduce a bias into its steady-state solution. We then provide modifications of this algorithm that effectively mitigate these effects for estimating causal FIR solutions to single- and multichannel equalization and source separation tasks. The new multichannel blind deconvolution algorithm requires approximately 6.5 multiply/adds per adaptive filter coefficient, making its computational complexity about 63% greater than the originally-proposed version. Numerical experiments verify the robust convergence performance of the new method both in multichannel blind deconvolution tasks for i.i.d. sources and in convolutive BSS tasks for real-world acoustic sources, even for extremely-short separation filters.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 1 )