By Topic

SRR: an O(1) time-complexity packet scheduler for flows in multiservice packet networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chuanxiong Guo ; Inst. of Commun. Eng., Nanjing, China

We present a novel fair queueing scheme, which we call Smoothed Round Robin (SRR). Ordinary round-robin schedulers are well known for the burstiness of their scheduling output. In order to overcome this problem, SRR codes the weights of the flows into binary vectors to form a Weight Matrix and then uses a Weight Spread Sequence (WSS), which is specially designed to distribute the output more evenly, to schedule packets by scanning a Weight Matrix. By using the WSS and the Weight Matrix, SRR emulates the Generalized Processor Sharing (GPS) well. SRR possesses better short-term fairness and scheduling delay properties in comparison with various existing round-robin schedulers. At the same time, SRR preserves O(1) time complexity by avoiding the time-stamp maintenance employed in various fair queueing schedulers. Simulation and implementation experiments show that SRR provides good mean end-to-end delay for soft real-time services. SRR can be implemented in high-speed networks to provide quality of service due to its simplicity and low time complexity.

Published in:

IEEE/ACM Transactions on Networking  (Volume:12 ,  Issue: 6 )