By Topic

A minimum cost heterogeneous sensor network with a lifetime constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mhatre, V.P. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Rosenberg, C. ; Kofman, D. ; Mazumdar, R.
more authors

We consider a heterogeneous sensor network in which nodes are to be deployed over a unit area for the purpose of surveillance. An aircraft visits the area periodically and gathers data about the activity in the area from the sensor nodes. There are two types of nodes that are distributed over the area using two-dimensional homogeneous Poisson point processes; type 0 nodes with intensity (average number per unit area) /spl lambda//sub 0/ and battery energy E/sub 0/; and type 1 nodes with intensity /spl lambda//sub 1/ and battery energy E/sub 1/. Type 0 nodes do the sensing while type 1 nodes act as the cluster heads besides doing the sensing. Nodes use multihopping to communicate with their closest cluster heads. We determine them optimum node intensities (/spl lambda//sub 0/, /spl lambda//sub 1/) and node energies (E/sub 0/, E/sub 1/) that guarantee a lifetime of at least T units, while ensuring connectivity and coverage of the surveillance area with a high probability. We minimize the overall cost of the network under these constraints. Lifetime is defined as the number of successful data gathering trips (or cycles) that are possible until connectivity and/or coverage are lost. Conditions for a sharp cutoff are also taken into account, i.e., we ensure that almost all the nodes run out of energy at about the same time so that there is very little energy waste due to residual energy. We compare the results for random deployment with those of a grid deployment in which nodes are placed deterministically along grid points. We observe that in both cases /spl lambda//sub 1/ scales approximately as /spl radic/(/spl lambda//sub 0/). Our results can be directly extended to take into account unreliable nodes.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:4 ,  Issue: 1 )