By Topic

Classification of remote sensing images from urban areas using a fuzzy model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chanussot, J. ; Signals & Images Lab., LIS, St Martin D''Heres, France ; Benediktsson, J.A. ; Vincent, M.

The problem of classification of high-resolution remotely sensed images from urban areas is addressed. Previous studies have shown the interest of exploiting the local geometrical information of each pixel to improve the classification. This is performed using the derivative morphological profile (DMP) obtained with a granulometric approach, using respectively opening and closing operators. For each pixel, this DMP constitutes the feature vector on which the classification is based. In this paper, this vector is considered as a fuzzy measurement of the size of the structure. Compared with some possibility distributions, a membership degree is computed for each class. The decision is taken by selecting the class with the highest membership degree.

Published in:

Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International  (Volume:1 )

Date of Conference:

20-24 Sept. 2004