By Topic

Visual, tactile, and vibration-based terrain analysis for planetary rovers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Legnemma ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; C. Brooks ; S. Dubowsky

Future planetary exploration missions can require rovers to perform difficult tasks in rough terrain, with limited human supervision. Knowledge of terrain physical characteristics would allow a rover to adapt its control and planning strategies to maximize its effectiveness. This paper describes recent and current work at MIT in the area of onboard terrain estimation and sensing utilizing visual, tactile, and vibrational feedback. A vision-based method for measuring wheel sinkage is described. A tactile method for on-line terrain parameter estimation is also presented. Finally, a method for terrain classification based on analysis of vibration in the rover suspension is described. It is shown through simulation and experimental results that these methods can lead to accurate and efficient understanding of a rover's physical surroundings.

Published in:

Aerospace Conference, 2004. Proceedings. 2004 IEEE  (Volume:2 )

Date of Conference:

6-13 March 2004