By Topic

Single microdroplet ejection using an ultrasonic longitudinal mode with a PZT/tapered glass capillary

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Hoon Lee ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Lal, A.

We have developed an ultrasonic PZT/tapered glass capillary resonant actuator that can eject a single droplet every acoustic cycle without also generating satellite droplets. The mechanism of the actuation is resonant longitudinal motion-induced squeezing of a tapered volume. The actuator is driven at 160 kHz and requires voltages less than 2 V/sub pp/ to operate. In this paper, the droplet generation of isopropanol and water mixtures, which have different densities, viscosities, and surface tensions, is investigated. It is determined that the geometrical squeezing mechanism and the ejected jet breakup makes the droplet size independent of frequency, but more a function of the ejecting orifice diameter that is much smaller than the capillary wavelength.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 11 )