By Topic

Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gao, H. ; Space Control & Inertial Technol. Res. Center, Harbin Inst. of Technol., China ; Lam, J. ; Wang, C. ; Wang, Y.

The output-feedback stabilisation problem is solved for discrete-time systems with time-varying delay in the state. A stability condition is first proposed, which is dependent on the minimum and maximum delay bounds. Based on this easily verifiable stability condition, the problems of stabilisation by static and dynamic output-feedback controllers are solved within the linear matrix inequality (LMI) framework. Since the obtained conditions for the existence of admissible controllers are not expressed as strict LMI conditions, the cone complementary linearisation procedure is exploited to solve the nonconvex feasibility problem. In addition, the obtained results, including stability analysis, static output-feedback stabilisation and dynamic output-feedback stabilisation are further extended to discrete time-delay systems with norm-bounded uncertain parameters. Numerical examples are also presented to illustrate the applicability of the developed results.

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:151 ,  Issue: 6 )