By Topic

Study of electron tunnelling through thin polymer films using a mercury probe technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. V. Nabok ; Sch. of Eng., Sheffield Hallam Univ., UK ; J. Massey ; S. Buttle ; A. K. Ray

A non-destructive technique employing a mercury probe as a counter electrode was successfully developed in order to study the mechanism of charge transport through thin polymer films on silicon and aluminum substrates. The polyelectrolyte self-assembly technique was employed to form the organic films. Both DC and AC current-voltage characteristics were measured at room temperature. An exponential dependence of the tunnelling current on the film thickness was found, and a tunnelling coefficient of 3.3×10-9 m-1 was calculated. The observed voltage dependence was interpreted in terms of the model of a trapezoidal-triangular barrier. The peak in current-voltage characteristics of polymer films on aluminum substrates may be attributed to resonance tunnelling via surface states on the alumina/polymer film interface.

Published in:

IEE Proceedings - Circuits, Devices and Systems  (Volume:151 ,  Issue: 5 )