By Topic

Convergence analysis of the adaptive lattice filter for a mixed Gaussian input sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Togami, T. ; Dept. of Syst. Innovation, Osaka Univ., Toyonaka, Japan ; Iiguni, Y.

The convergence performance of the adaptive lattice filter (ALF) using the stochastic gradient algorithm is measured by the convergence speed and estimated error variance of the PARCOR coefficient. The convergence properties of the ALF are analysed when the filter input has a Gaussian mixture distribution. First, theoretical expressions for the convergence rate and asymptotic error variance of the PARCOR coefficient are derived, and then the theoretical expressions are compared for single and mixed Gaussian input sequences. It is shown that the convergence performance of the ALF improves as the distribution of the input signal approaches a single Gaussian distribution.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:151 ,  Issue: 5 )