By Topic

Effect of attenuation on backward-wave oscillation start oscillation condition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhaoyun Duan ; Nat. Key Lab. of High Power Vacuum Electron., Univ. of Electron. Sci. & Technol. of China, Sichuan, China ; Yubin Gong ; Wenxiang Wang ; Yanyu Wei
more authors

In a practical helix traveling-wave tube (TWT), there is always attenuator/sever for suppressing the oscillations, including backward-wave oscillation (BWO). The factors of the influencing BWO include start position of the attenuator, its length, and attenuation quantity. In the event that the attenuator/sever and nonuniformities in the phase velocity and beam potential were considered, a linear theory is employed to analyze BWO start oscillation condition. Numerical results show that the start oscillation length of the TWT decreases when the start position of the attenuator is close to the input section of the slow wave structure (SWS), that Start oscillation current of the output section of the SWS increases as the attenuation length decreasing, or the attenuation quantity increasing or the nonuniformities becoming strong, and that, however, when the phase velocity or beam potential exceeds a particular value, no oscillation condition could be found.

Published in:

IEEE Transactions on Plasma Science  (Volume:32 ,  Issue: 6 )