Cart (Loading....) | Create Account
Close category search window
 

Investigation of an all-optical wavelength converter with reshaping properties based on four-wave mixing in passive microring resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mikroulis, S. ; Dept. of Phys., Univ. of Athens, Greece ; Bogris, A. ; Roditi, E. ; Syvridis, D.

The properties of an all-optical wavelength converter with reshaping characteristics, based on four-wave mixing (FWM) in a passive GaAs-AlGaAs microring resonator side-coupled to a bus waveguide, are investigated in this paper. The reshaping properties are based on the nonlinear FWM transfer function as a result of the two-photon absorption enhanced by the resonance effect. A detailed study of the static and dynamic reshaping characteristics of the wavelength converter has been carried out. Its performance, evaluated by extinction ratio and Q-factor calculations, showed satisfactory regenerative properties up to 10 Gb/s.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 12 )

Date of Publication:

Dec. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.