By Topic

Hybrid fuzzy control of robotics systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ya Lei Sun ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Meng Joo Er

This paper presents a new approach towards optimal design of a hybrid fuzzy controller for robotics systems. The salient feature of the proposed approach is that it combines the fuzzy gain scheduling method and a fuzzy proportional-integral-derivative (PID) controller to solve the nonlinear control problem. The resultant fuzzy rule base of the proposed controller can be decomposed into two layers. In the upper layer, the gain scheduling method is incorporated with a Takagi-Sugeno (TS) fuzzy logic controller to linearize the robotics system for a given reference trajectory. In the lower layer, a fuzzy PID controller is derived for all the locally linearized systems by replacing the conventional PI controller by a linear fuzzy logic controller, which has different gains for different linearization conditions. Within the guaranteed stability region, the controller gains can be optimally tuned by genetic algorithms. Simulation studies on a pole balancing robot and a multilink robot manipulator demonstrate the effectiveness and robustness of the proposed approach.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 6 )